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1 Maximum Principles for Solutions to Elliptic PDEs

1.1 The weak maximum principle

Today, we will cover maximum principles. This material corresponds to section 6.5 in
Evans’ textbook. This is a theory for solutions to elliptic PDEs in terms of their pointwise
values (inherently scalar). Here, it is very important that u : U → R is real-valued.

For today’s lecture, it is more convenient to consider operators in non-divergence form:

Pu = −aj,k∂j∂kuk + bj∂ju+ cu.

We assume the ellipticity condition, that a � λI for some λ > 0, and we assume that
a, b, c ∈ L∞. (Often, we will start with c = 0.)

The theory of maximum principles should be thought of as a generalization of the
theory of convex functions on R. In the case of convex functions on R, we have the
following theorem.

Theorem 1.1. Suppose u : I → R is convex. Then maxI u = max∂I , i.e. the maximum is
attained on the boundary.

One way to generalize 1 dimensional convex functions is to look at convex functions in
d dimensions. This is very useful, but it may be too restrictive. Instead, we should think
of subsolutions to elliptic PDEs.

Definition 1.1. We say that u ∈ C2(U) is a (classical) subsolution if Pu ≤ 0.
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Remark 1.1. When d = 1 and P = −a∂2x with a > 0, Pu ≤ 0 if and only if u is convex.

Theorem 1.2 (Weak maximum principle). Let U be a connected, bounded, open subset of
Rd. Let u ∈ C2(U) ∩ C(U) with Pu ≤ 0. Assume for now that c = 0. Then

max
U

u = max
∂U

u.

Proof. Step 1: Consider strict subsolutions Pu < 0. We will show that no interior max-
imum is possible. Suppose, for contradiction, that x0 ∈ U is a (local) maximum. Then
Du(x0) = 0, and the second derivative test tells us that D2u(x0) ≤ 0. We have

0 > Pu(x0)

= −aj,k∂j∂ku|x=x0 + bj ∂ju|x=x0︸ ︷︷ ︸
=Du=0

+ c︸︷︷︸
=0

u

We will interpret the first term as a trace. Call h = D2u. Since a is positive definite, we
can find an orthogonal matrix O such that OaO−1 = D, where D is diagonal with positive
entries ej . This makes aj,k∂j∂k = Oj,j′ej′δj′,k′Ok,k′ . Then aj,khj,k = Pj,j′ej′δj′,k′Ok,khj,k.

= − tr(aD2u)

≥ 0

This is a contradiction.
Step 2: Upgrade to all subsolutions u. Introduce the approximation

uε = u+ εv,

where v is a strict subsolution: Pv < 0 with v ∈ C2(U) ∩ C(U). Then uε → u uniformly
on U , and

Puε = Pu+ εPv ≤ εPv < 0.

How do we construct a strict subsolution v? We want something that is convex. A good
candidate is v = ex

1
because

−aj,k∂j∂k(ex
1
) = −a1,1ex1 < 0.

We want to introduce a function which has a second order derivative much smaller than a
first order derivative. So instead consider eµx

1
, where µ is large. Then

−aj,k∂j∂k(eµx
1
) = −a1,1eµx1 ≤ −λµ2eµx1 ,

|bj∂jeµx
1 | = | − bjµeµx1 | ≤ sup |b| · µeµx1 .

So if µ is large, Pv < 0.

Definition 1.2. We say that u ∈ C2(U) is a (classical) supersolution if Pu ≥ 0.
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1.2 The weak minimum principle, extension of the weak maximum prin-
ciple, and the comparison principle

Theorem 1.3 (Weak minimum principle). Have the same hypotheses except assume that
Pu ≥ 0 and c = 0. Then

min
U
u = min

∂U
u.

Remark 1.2. u is a solution if and only if it is a subsolution and a super solution. So
under the same hypotheses with Pu = 0, we get

max
U
|u| = max

∂U
|u|.

Corollary 1.1 (Weak maximum principle, c ≥ 0). Suppose U is a bounded, open connected
subset of Rd and u ∈ C2(U) ∩ C(U). For Pu ≤ 0.

Pu ≤ 0 =⇒ max
U
≤ max

∂U
u+,

Pu ≥ 0 =⇒ min
U
≤ min

∂U
u−,

where

u+ =

{
u if u > 0

0 if u ≤ 0,
u+ =

{
0 if u ≥ 0

−u if u < 0.

Proof. Here is the max part: Let V = {x ∈ U : u(x) > 0}, and let Qu = Pu − cu.
Q satisfies the hypotheses and has no zero order term: u ≤ −cu ≤ 0 in V . The weak
maximum principle for Q on V gives maxV u ≤ max∂V u. Note that the maximum of u on
∂V is the maximum of u on ∂U . So we get the claim.

Theorem 1.4 (Comparison principle). Let U be an open, bounded, connected subset of
Rd. Let P be elliptic with c ≥ 0. Suppose u, v ∈ C2(U) ∩ C(U) with Pu ≤ 0 in U and
Pv ≥ 0 in U . If U ≤ v on ∂U , then u ≤ v on U .

Proof. This is an application of the previous corollary to u− v, which is a subsolution.

1.3 The strong maximum principle

Theorem 1.5 (Strong maximum principle). Let U be an open, bounded, connected subset
of Rd, and let c = 0. Let u ∈ C2(U) ∩ C(U) be such that Pu ≤ 0. If u has a maximum at
x0 ∈ U (u(x)−maxU u), then u is constant on U .

Think of the picture of convex functions. The only way to have a maximum in the
interior is if the whole function is constant (the graph is a horizontal straight line).
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Theorem 1.6 (Hopf’s lemma). Let U be an open, bounded, connected subset of Rd. Sup-
pose that x0 ∈ ∂U is such that

(i) there exists some x1 ∈ U and r1 > 0 such that Br1(x1) ⊆ U and Br1(x1)∩∂U = {x0},

(ii) u(x0) ≥ u(x) in Br1(x1),

(iii) u(x0) > u(x) in Br1(x1).

Then the normal derivative ∂
∂ν |x=x0 > 0.

Remark 1.3. We should already be able to tell that ∂
∂ν |x=x0 ≥ 0. The real content of the

theorem is the strict positivity.

In the picture of convex functions, take an interior point x1 and look at the chord
connecting x1 and the boundary point.

The idea is that this chord must have positive slope, so the actual slope of the original
function at that point should be greater than the slope of the chord.

Proof. Without loss of generality, take x1 = 0. Consider v = e−µr
2
1−eµ|x|2 so that v(x) = 0

on {|x| = r1}. Then Pv ≥ 0 on Br1 \Br1/2 for large µ (this is the same type of computation
as before). Try to compare u to w = v + u(x0), where

Pw = Pv + Pu(x0) = Pv ≥ 0.
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Let V = Br1 \Br1/2, so ∂V = ∂Br1 ∪∂Br1/2. On the outer boundary ∂Br1 , w = u(x0) ≥ u.
On the inner boundary ∂Br1/2, w = εv + u(x0). So for small enough ε, on the inner
boundary, u(x0) > u(x) + ε(−v). By the comparison principle, w ≥ u on V = Br1 \Br1/2.
Thus,

∂u

∂ν

∣∣∣∣∣
x=x0

≥ ∂v

∂ν

∣∣∣∣∣
x=x0

> 0.

Proof. Let V = {x ∈ U : u(x) ≤M}, where M = supU u. Then for x0 ∈ U , if u(x0) = M ,
then V ( U . Assume for contradiction that V 6= ∅. Find a point x1 closer to ∂V than
∂U and consider the biggest r1 such that Br1(x1) ⊆ V . Let x0 ∈ Br1(x1) ∩ ∂V . Let
x′0 ∈ Br1(x1) ∩ ∂V .

We may arrange, by taking x1 close enough to ∂V , so that Hopf’s lemma is applicable.
This tells us that ∂

∂νu|x=x′0 6= 0. But this contradicts the facr that u(x′0) = M implies
Du|x=x′0 = 0
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